Consistency of Objective Bayes Factors as the Model Dimension Grows
نویسندگان
چکیده
In the class of normal regression models with a finite number of regressors, and for a wide class of prior distributions, a Bayesian model selection procedure based on the Bayes factor is consistent [Casella and Moreno J. Amer. Statist. Assoc. 104 (2009) 1261–1271]. However, in models where the number of parameters increases as the sample size increases, properties of the Bayes factor are not totally understood. Here we study consistency of the Bayes factors for nested normal linear models when the number of regressors increases with the sample size. We pay attention to two successful tools for model selection [Schwarz Ann. Statist. 6 (1978) 461–464] approximation to the Bayes factor, and the Bayes factor for intrinsic priors [Berger and Pericchi J. Amer. Statist. Assoc. 91 (1996) 109–122, Moreno, Bertolino and Racugno J. Amer. Statist. Assoc. 93 (1998) 1451–1460]. We find that the the Schwarz approximation and the Bayes factor for intrinsic priors are consistent when the rate of growth of the dimension of the bigger model is O(nb) for b < 1. When b = 1 the Schwarz approximation is always inconsistent under the alternative while the Bayes factor for intrinsic priors is consistent except for a small set of alternative models which is characterized.
منابع مشابه
EMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL
A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملGroundwater Potential Mapping using Index of Entropy and Naïve Bayes Models at Ardabil Plain
Although groundwater resources have long been selected as a safe choice for resolving human water requirements, overexploitation of them, especially at Ardabil plain, has promoted a decrease in the quality and quantity of these resources. One of the significant solutions is to identification of the groundwater potential zones and exploitation of them according to their potentials. The aim of th...
متن کاملConsistency of objective Bayes factors for nonnested linear models and increasing model dimension
Casella et al. [2, (2009)] proved that, under very general conditions, for normal linear models the Bayes factor for a wide class of prior distributions, including the intrinsic priors, is consistent when the number of parameters does not grow with the sample size n. The special attention paid to the intrinsic priors is due to the fact that they are nonsubjective priors, and thus accessible pri...
متن کاملSome theory for Fisher’s linear discriminant function, ‘naive Bayes’, and some alternatives when there are many more variables than observations
We show that the ‘naive Bayes’ classifier which assumes independent covariates greatly outperforms the Fisher linear discriminant rule under broad conditions when the number of variables grows faster than the number of observations, in the classical problem of discriminating between two normal populations. We also introduce a class of rules spanning the range between independence and arbitrary ...
متن کامل